Move Evaluation in Go Using Deep Convolutional Neural Networks
نویسندگان
چکیده
The game of Go is more challenging than other board games, due to the difficulty of constructing a position or move evaluation function. In this paper we investigate whether deep convolutional networks can be used to directly represent and learn this knowledge. We train a large 12-layer convolutional neural network by supervised learning from a database of human professional games. The network correctly predicts the expert move in 55% of positions, equalling the accuracy of a 6 dan human player. When the trained convolutional network was used directly to play games of Go, without any search, it beat the traditional-search program GnuGo in 97% of games, and matched the performance of a state-of-the-art Monte-Carlo tree search that simulates two million positions per move.
منابع مشابه
Move Prediction using Deep Convolutional Neural Networks in Hex
Using deep convolutional neural networks for move prediction has led to massive progress in Computer Go. Like Go, Hex has a large branching factor that limits the success of shallow and selective search. We show that deep convolutional neural networks can be used to produce reliable move evaluation in the game of Hex. We begin by collecting self-play games of MoHex 2.0. We then train the neural...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملTraining Deep Convolutional Neural Networks to Play Go
Mastering the game of Go has remained a longstanding challenge to the field of AI. Modern computer Go programs rely on processing millions of possible future positions to play well, but intuitively a stronger and more ‘humanlike’ way to play the game would be to rely on pattern recognition rather than brute force computation. Following this sentiment, we train deep convolutional neural networks...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1412.6564 شماره
صفحات -
تاریخ انتشار 2014